Create Pricing Metric Summary
pricing_metrics.create_summary(strpricing_metric_id, PricingMetricCreateSummaryParams**kwargs) -> PricingMetricCreateSummaryResponse
/pricing-metrics/{pricing_metric_id}/summary
Create Pricing Metric Summary
Parameters
pricing_metric_id: str
subject_id: str
The ID or external ID of the subject that the summary should be computed for.
dimensions: Optional[SequenceNotStr[str]]
The dimensions by which the events are grouped to compute the pricing metric.
Returns
Create Pricing Metric Summary
import os
from datetime import datetime
from lark import Lark
client = Lark(
api_key=os.environ.get("LARK_API_KEY"), # This is the default and can be omitted
)
response = client.pricing_metrics.create_summary(
pricing_metric_id="pmtr_GlX5Tcm2HOn00CoRTFxw2Amw",
period={
"start": datetime.fromisoformat("2025-10-01T00:00:00"),
"end": datetime.fromisoformat("2025-11-01T00:00:00"),
},
subject_id="subj_VyX6Q96h5avMho8O7QWlKeXE",
)
print(response)
[
{
"id": "pmtr_sum_vqXWIKBYia15D5dNyCLLlsa4",
"dimension_coordinates": {
"foo": "string"
},
"period": {
"end": "2025-11-01T00:00:00Z",
"start": "2025-10-01T00:00:00Z",
"inclusive_end": false,
"inclusive_start": true
},
"pricing_metric_id": "pmtr_GlX5Tcm2HOn00CoRTFxw2Amw",
"subject_id": "subj_VyX6Q96h5avMho8O7QWlKeXE",
"value": "22.5"
}
]
Returns Examples
[
{
"id": "pmtr_sum_vqXWIKBYia15D5dNyCLLlsa4",
"dimension_coordinates": {
"foo": "string"
},
"period": {
"end": "2025-11-01T00:00:00Z",
"start": "2025-10-01T00:00:00Z",
"inclusive_end": false,
"inclusive_start": true
},
"pricing_metric_id": "pmtr_GlX5Tcm2HOn00CoRTFxw2Amw",
"subject_id": "subj_VyX6Q96h5avMho8O7QWlKeXE",
"value": "22.5"
}
]